Commutator and Anti-Commutator

Identities

Lie algebra identities

  1. [A+B,C]=[A,C]+[B,C][A + B, C] = [A, C] + [B, C]
  2. [A,A]=0[A, A] = 0
  3. [A,B]=[B,A][A, B] = -[B, A]
  4. [A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 is called Jacobi identity

Additional identities

  1. [A,BC]=[A,B]C+B[A,C][A, BC] = [A, B]C + B[A, C]
  2. [A,BCD]=[A,B]CD+B[A,C]D+BC[A,D][A, BCD] = [A, B]CD + B[A, C]D + BC[A, D]
  3. [A,BCDE]=[A,B]CDE+B[A,C]DE+BC[A,D]E+BCD[A,E][A, BCDE] = [A, B]CDE + B[A, C]DE + BC[A, D]E + BCD[A, E]
  4. [AB,C]=A[B,C]+[A,C]B[AB, C] = A[B, C] + [A, C]B
  5. [ABC,D]=AB[C,D]+A[B,D]C+[A,D]BC[ABC, D] = AB[C, D] + A[B, D]C + [A, D]BC
  6. [ABCD,E]=ABC[D,E]+AB[C,E]D+A[B,E]CD+[A,E]BCD[ABCD, E] = ABC[D, E] + AB[C, E]D + A[B, E]CD + [A, E]BCD
  7. [A,B+C]=[A,B]+[A,C][A, B + C] = [A, B] + [A, C]
  8. [A+B,C+D]=[A,C]+[A,D]+[B,C]+[B,D][A + B, C + D] = [A, C] + [A, D] + [B, C] + [B, D]
  9. [AB,CD]=A[B,C]D+[A,C]BD+CA[B,D]+C[A,D]B[AB, CD] = A[B, C]D + [A, C]BD + CA[B, D] + C[A, D]B
  10. [[A,C],[B,D]]=[[[A,B],C],D]+[[[B,C],D],A]+[[[C,D],A],B]+[[[D,A],B],C][[A, C], [B, D]] = [[[A, B], C], D] + [[[B, C], D], A] + [[[C, D], A], B] + [[[D, A], B], C]

Exponential identities

  1. eA=exp(A)=1+A+12!A2+e^{A} = \exp(A) = 1 + A + \frac{1}{2!}A^2 + \cdots
  2. The solution of exey=eze^{x}e^{y} = e^{z} if XX and YY are non-commutative to each other is Z=X+Y+12[X,Y]+112[X,[X,Y]]112[Y,[X,Y]]+Z = X + Y + \frac{1}{2} [X, Y] + \frac{1}{12} [X, [X, Y]] - \frac{1}{12} [Y, [X, Y]] + \cdots. It’s called Baker-Campbell-Hausdorff formula.
  3. eA+B=limn(eA/neB/n)ne^{A + B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^{n} is known as Trotter product formula. It says for sufficiently large nn, we can ignore the noncommutativity between AA and BB. It can be used to formulate the Feynman path integral, see here.
  4. eABeA=B+[A,B]+12![A,[A,B]]+13![A,[A,[A,B]]]+e^{A} B e^{-A} = B + [A, B] + \frac{1}{2!}[A, [A, B]] + \frac{1}{3!}[A, [A, [A, B]]] + \cdots

Permalink at https://www.rdamodar.com.np/math-notes/commutator

Published on May 3, 2021

Last revised on Jul 2, 2023

References

Wonder what's this about? See the author's webpage!