Exterior Calculus: Differential Forms

In elementary calculus, we learned dxd{x} as an infinitesimal change, but now we are grown up😊so we would like to rephrase it as 11-form. So, xx is referred to as a 00-form. The higher order forms such as the 22-form dAd{A} and the 33-form dVd{V} are often thought of in-terms of their composite 11-forms. This suggests, 11-form is a building block of modern differential calculus which was pioneered by Élie Cartan.

General idea

  • Vector is a linear combination of basis vectors. For instance, A=A1x^+A2y^+A3z^\vec{A} = A_{1} \hat{x} + A_{2}\hat{y} + A_{3}\hat{z}.
  • 1-form is a linear combination of differentials. For instance, A=A1dx+A2dy+A3dzA = A_{1} dx + A_{2} dy + A_{3} dz.
  • Notice that, no arrowhead on 1-form.
  • Use exterior products, to extend to higher dimensional forms (i.e. p-forms).
  • Completely antisymmetric (0p)\begin{pmatrix} 0 \\ p \end{pmatrix} tensors, called p-forms.

Notation & conventions

  • Tijk=T~(ei,ej,,ek)T_{ij\ldots k} = \tilde{T}(\vec{e}_i, \vec{e}_j, \ldots, \vec{e}_k) where ei{\vec{e}_i} is the set of basis vectors.
  • For (02)\begin{pmatrix} 0 \\ 2 \end{pmatrix} tensor, T[ij]=12!(TijTji)T_{[ij]} = \frac{1}{2!} (T_{ij} - T_{ji}).
  • Thus, (0p)\begin{pmatrix} 0 \\ p \end{pmatrix} tensor, T[i1ip]=1p!T_{[i_{1}\ldots i_{p}]} = \frac{1}{p!}(alternating sum over permutations of the indices i1i_{1} to ipi_{p}).
    • For example, Tijk=16(TijkTjik+TjkiTkji+TkijTikj)T_{ijk} = \frac{1}{6} (T_{ijk} - T_{jik} + T_{jki} - T_{kji} + T_{kij} - T_{ikj})
  • Tensor product of a T~\tilde{T} of (0p)\begin{pmatrix} 0 \\ p\end{pmatrix} tensor, and S~\tilde{S} of (0q)\begin{pmatrix} 0 \\ q\end{pmatrix} is T~S~\tilde{T} \otimes \tilde{S} of (0p+q)\begin{pmatrix} 0 \\ p + q \end{pmatrix} tensor.
  • T~S~\tilde{T} \otimes \tilde{S} action on (p+q)(p+q) vector arguments is

    T~S~(A1,,Ap,B1,,Bq)=T~(A1,,Ap)S~(B1,,Bq)\tilde{T} \otimes \tilde{S} (\vec{A}_{1}, \ldots, \vec{A}_{p}, \vec{B}_{1}, \ldots, \vec{B}_{q}) = \tilde{T}(\vec{A}_{1}, \ldots, \vec{A}_{p})\tilde{S}(\vec{B}_{1}, \ldots, \vec{B}_{q})

Operators

  • Differential (exterior derivative): Takes pp-forms as inputs and create (p+1)(p+1)-forms; d:=(xdx+ydy+zdz)d := \left( \frac{\partial }{\partial x}dx + \frac{\partial }{\partial y}dy + \frac{\partial }{\partial z}dz\right)\wedge
  • dndddn times:=0d^{n} \equiv d\circ d\circ d\ldots n~\text{times} := 0
  • Exterior product (wedge product): dxdy=dydxdx \wedge dy = -dy \wedge dx
  • Hodge star operator: :Λp(Ω)Λnp(Ω)\star : \Lambda^{p}(\Omega) \to \Lambda^{n-p}(\Omega) where Λp(Ω)\Lambda^{p}(\Omega) is a space of diffferential p-forms on a smooth connected n-dimensional manifold Ω\Omega.

    dx=dydz,dx=dx,dx=dydzdy=dzdxdz=dxdy \begin{align*} \star dx &= dy \wedge dz, \star\star dx = dx, dx = \star dy\wedge dz \\ \star dy &= dz \wedge dx \\ \star dz &= dx \wedge dy \end{align*}

  • co-differential (exterior anti-derivative): Takes pp-forms as input and create (p1)(p-1)-forms; δ:=d\delta := \star d \star
  • δn:=0\delta^{n} := 0
  • Hodge Laplacian (Higher order Laplacian): Laplacian act on pp-forms;

    Δp:=(d+δ)2=d2+dδ+δd+δ2=dδ+δd\Delta^{p} := (d + \delta)^{2} = d^{2} + d\delta + \delta d + \delta^{2} = d\delta + \delta d

  • Musical operator (Musical Isomorphism):
    • Flat operator \flat: Transform vector fields into forms. i.e. v:=i=1nfixiv v:=i=1nfidxi\vec{v} := \sum_{i = 1}^{n} f_{i} \frac{\partial}{\partial x_{i}} \to \vec{v}^{~\flat} \equiv v := \sum_{i=1}^{n}f_{i}dx_{i}
    • Sharp operator \sharp: Transform forms into vector fields. i.e. v:=i=1nfidxivv:=i=1nfixiv := \sum_{i=1}^{n}f_{i}dx_{i} \to v^{\sharp} \equiv \vec{v} := \sum_{i = 1}^{n} f_{i} \frac{\partial}{\partial x_{i}}

Operations

  • d(U+V)=dU+dVd(U + V) = dU + dV where UU and VV are pp-forms.
  • Leibniz product rule: d(UV)=dUV+(1)deg(V)UdVd(U \wedge V) = dU \wedge V + (-1)^{\text{deg(V)}} U \wedge dV.
  • d(fU)=d(fU)=dfU+fdUd(f U) = d(f \wedge U) = df \wedge U + f \wedge dU where ff is a 00-form.
  • Given xx is a 11-form and yy is a vector field then, (x)=x(x^{\sharp})^{\flat} = x and (y)=y(y^{\flat})^{\sharp} = y. These two operators cancel each other.
  • Applying \star twice to a pp-form UU will give back up to sign. i.e.

    U=1(np)pU\star\star U = -1^{(n-p)p} U where nn is the dimension of the manifold.

  • Applying four times to UU always gives to identity. i.e.

    U=U\star\star\star\star U = U

Algebraic topological jargons

NameMeaning
coboundary mapsARm×n,BRn×pA \in \mathbb{R}^{m\times n}, B\in \mathbb{R}^{n\times p}
cochainselements of R\mathbb{R}
cochains complexRpBRnARm\mathbb{R}^{p} \stackrel{B}{\to} \mathbb{R}^{n} \stackrel{A}{\to} \mathbb{R}^{m}
cocycleselements of ker(A)\text{ker}(A)
coboundarieselements of im(B)\text{im}(B)
cohomology classeselements of ker(A)/im(B)\text{ker}(A)/\text{im}(B)
harmonic cochainselements of ker(AA+BB)\text{ker}(A^* A + B B^*)
Betti numbersdim ker(AA+BB)\text{dim}~\text{ker}(A^* A + B B^*)
Hodge LaplaciansAA+BBRn×nA^* A + B B^* \in \mathbb{R}^{n \times n}
xx is closedAx=0Ax = 0
xx is exactx=Bvx = Bv for some vRpv \in \mathbb{R}^{p}
xx is coclosedBx=0B^{*}x = 0
xx is coexactx=Awx = A^* w for some wRmw \in \mathbb{R}^{m}
xx is harmonic(AA+BB)x=0(A^* A + B B*)x = 0

Upshots

  • Poincare Lemma: dV=0V=dUdV = 0 \Leftrightarrow V = dU.
    • if dV=0dV = 0 then VV is said to be closed.
    • if V=dUV = dU then VV is said to be exact.
  • Generalized Storke theorem: ΩU=ΩdU\oint_{\partial \Omega} U = \partial_{\Omega} dU.
  • Harmonic forms: if pp-form UU is harmonic iff ΔU=0\Delta U = 0.
  • Helmholtz-Hodge decomposition theorem for p-form ω\omega: ω=dp1ϕ+δp+1ψ+hp(ω)\omega = d^{p-1} \phi + \delta^{p+1} \psi + h^{p}(\omega) where ϕ,ψ,\phi, \psi, and hh are scalar (00-form), 22-form, and harmonic component (pp-form), respectively.
  • Eigenvalue problem: Δpω=λω\Delta^{p} \omega = \lambda \omega
  • Generalized forms: 1-1-form := a form of negative degree (Sparling 1997, Nurowski-Robinson 2001, 2002)

Applications

Classical vector calculus

  • Below is the exterior calculus equivalance to vector calculus.
    Classical differential operatorExterior differential operator
    xx is a scalar field (or just a function)xx is a 00-form
    Gradient: x\nabla x(dx)(dx)^{\sharp}
    Divergence: A\nabla \cdot \vec{A}δA\delta A
    Curl: ×A\nabla \times \vec{A}(dA)(\star d A^{\flat})^{\sharp}
    Scalar Laplacian: Δx:=x\Delta x := \nabla\cdot\nabla xΔ0x:=δdx\Delta^{0} x := \delta d x
    Vector (Helmholtz) Laplacian,
    ΔA:=(A)×(×A)\Delta \vec{A} := \nabla (\nabla\cdot\vec{A}) - \nabla\times(\nabla\times\vec{A})
    Δ2A:=(δA)(d((dA)))(dδ+δd)A\Delta^{2} A := (\delta A)^{\sharp} - (\star d((\star dA^{\flat})^{\sharp})^{\flat})^{\sharp} \equiv (d\delta + \delta d)A
    Tensor Laplacian,
    Aμν;λ;λ=1gμν(gμνgμκAμν,κ),μA_{\mu\nu;\lambda}^{\hspace{0.5cm};\lambda} = \frac{1}{\sqrt{|g_{\mu\nu}|}} (\sqrt{|g_{\mu\nu}|} g^{\mu\kappa} A_{\mu\nu,\kappa})_{,\mu}
    Δp=dδ+δd\Delta^{p} = d\delta + \delta d

Electromagnetic fields

Classical differential operatorExterior differential operator
gradf:=f\text{grad} f := \nabla fdfdf
curlA:=×A\text{curl} \vec{A} := \nabla \times \vec{A}dAdA
divB:=B\text{div}\vec{B} := \nabla\cdot \vec{B}dBdB
×f=0\nabla\times \nabla f = 0d2f=0d^{2} f = 0
×A=0\nabla\cdot\nabla\times\vec{A} = 0d2A=0d^{2}A = 0
Scalar Laplacian, Δ0:=2\Delta^{0} := \nabla\cdot\nabla \equiv \nabla^{2}δdf\delta d f
××A\nabla\times\nabla\times \vec{A}δdA\delta d A

Permalink at https://www.rdamodar.com.np/math-notes/exterior-calculus

Published on Mar 13, 2022

Last revised on Jul 2, 2023

References

Wonder what's this about? See the author's webpage!