The Klein Gordon Field

2.1 The Necessity of the Field Viewpoint

13P4E5

Consider the amplitude for a free particle to propagate from x0\vec{x_{0}} to x\vec{x}: U(t)=xeiHtx0 \begin{align*} U(t) = \braket{\vec{x} \vert e^{-i H t} \vert \vec{x}_{0}} \end{align*} In the nonrelativisitic quantum mechanics, we have E=p22mpp2mE = \frac{\vec{p}^{2}}{2m} \equiv \frac{\vec{p}\cdot \vec{p}}{2m} (we will replace Hamiltonian operator by its eigen value), so

U(t)=xei(p22m)tx0=Using completeness relation, d3p(2π)3pp=1^=d3p(2π)3xei(p22m)tppx0=1(2π)3d3p ei(p22m)txpx0pwhere, ei(p22m)t is just a number.=Using xp=eipx.=1(2π)3d3p ei(p22m)teip(xx0).=Using Gaussian integral property,eax2+bx+c dx=πaeb24a+c.=1(2π)3(πit2m)3 exp(i2(xx0)24(it2m))=(2π)3/23(mit)3/2exp(i2(xx0)2 2m4it)=(m2πit)3/2eim(xx0)2/2t. \begin{aligned} U(t) &= \braket{\vec{x} \vert e^{-i ( \frac{\vec{p}^{2}}{2m}) t} \vert \vec{x}_{0}} \\ &= \text{Using \href{https://en.wikipedia.org/wiki/Orthonormal_basis}{completeness relation}, } \int \frac{d^{3} \vec{p}}{(2\pi)^{3}} \ket{\vec{p}}\bra{\vec{p}} = \mathbb{\hat{1}} \\ &= \int \frac{d^{3} \vec{p}}{(2\pi)^{3}} \braket{\vec{x} \vert e^{-i ( \frac{\vec{p}^{2}}{2m}) t} \ket{\vec{p}}\bra{\vec{p}}\vert \vec{x}_{0}} \\ &= \frac{1}{(2\pi)^{3}} \int d^{3}\vec{p} ~ e^{-i ( \frac{\vec{p}^{2}}{2m}) t} \braket{\vec{x} \vert \vec{p}} \braket{\vec{x}_{0} \vert \vec{p}}^{\dagger} \\ &\hspace{0.5cm} \text{where, } e^{-i ( \frac{\vec{p}^{2}}{2m}) t} \text{ is just a number.} \\ &= \text{Using } \braket{\vec{x} \vert \vec{p}} = e^{i \vec{p}\cdot \vec{x}}.\\ &= \frac{1}{(2\pi)^{3}} \int d^{3}\vec{p} ~ e^{-i ( \frac{\vec{p}^{2}}{2m}) t} e^{i \vec{p}\cdot (\vec{x} - \vec{x}_{0})}. \\ &= \text{Using Gaussian integral property}, \int_{-\infty}^{\infty} e^{-a x^{2} + bx + c} ~dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^{2}}{4a} + c}. \\ &= \frac{1}{(2\pi)^{3}} \left(\sqrt{\frac{\pi}{\frac{i t}{2m}}}\right)^{3} ~ \exp\left(\frac{i^{2} (\vec{x} - \vec{x}_{0})^{2}}{4 (\frac{it}{2m})}\right) \\ &= (2\pi)^{3/2 - 3} \left(\frac{m}{i t} \right)^{3/2} \exp\left( \frac{i^{\cancel{2}} (\vec{x} - \vec{x}_{0})^{2}~2m}{4 \cancel{i} t}\right) \\ &= \left(\frac{m}{2\pi i t} \right)^{3/2} e^{i m (\vec{x} - \vec{x}_{0})^{2}/2t}. \end{aligned}

Some notes on completeness relations from a functional analysis point of view

Completeness relation allows us to define the inner product. Let’s understand it with an example using position space. It can be done in momentum space as well.

\rightarrow For a single free particle moving in nn-dimensional Euclidean (flat) manifold Rn\mathbb{R}^{n}, we can have a complete orthonormal set of position basis vectors {x}\{\ket{x}\}. So, we can define

xy=δ(x,y),Rndnxxx=1^. \begin{aligned} \braket{x \vert y} &= \delta(x, y), \\ \int_{\mathbb{R}^{n}} d^{n}x \ket{x}\bra{x} &= \mathbb{\hat{1}}. \end{aligned}

We can identify the Hilbert space H\mathcal{H} of such a system with the square-integrable complex-valued functions L2(Rn,C)L^{2}(\mathbb{R}^{n}, \mathbb{C}) with the inner product

ϕψ=ϕ1^ψ=ϕRndnxxxψϕψ=Rndnx ϕxψx \begin{aligned} \braket{\phi \vert \psi} &= \bra{\phi}\mathbb{\hat{1}}\ket{\psi} \\ &= \bra{\phi} \int_{\mathbb{R}^{n}} d^{n}x \ket{x}\bra{x} \ket{\psi} \\ \therefore \braket{\phi \vert \psi} &= \int_{\mathbb{R}^{n}} d^{n}x ~\phi_x \psi^{*}_{x} \end{aligned}

where ϕxϕ(x):=ϕx\phi_{x} \equiv \phi(x) := \braket{\phi \vert x} is the position basis coefficient, and same for ψx\psi_{x}. Thus, ψx=(ψx)=xψ\psi^{*}_{x} = (\braket{\psi \vert x})^{*} = \braket{x \vert \psi}. The unique existence of their spaces is guaranteed by the Riesz representation theorem.

I showed you how the completeness relation is used to define the inner product. It was possible because the position basis localized the state of a particle. But, this naive notion of position basis is not viable for fields (or differential forms) in Riemannian manifold (M,g)(\mathcal{M}, g) where the metric gg is not necessarily flat. It would be out of the scope of this note to further discuss the issue but, I will at least give you short reason.

\rightarrow Suppose our ϕ\phi is a kk-forms in the space of differentials kk-forms Ωk(M)\Omega^{k}(\mathcal{M}). Due to the Hodge duality, we can find (nk)(n - k)-forms ϕΩnk(M)* \phi \in \Omega^{n - k}(\mathcal{M}) such that ϕϕ\phi \leftrightarrow *\phi where

ϕ=ϕi1ik dxi1dxik,ϕ=(ϕ)ik+1in dxik+1dxin \begin{aligned} \phi &= \phi_{i_1 \ldots i_k} ~dx^{i_1}\wedge \ldots \wedge dx^{i_k},\\ *\phi &= (*\phi)_{i_{k+1} \ldots i_n} ~ dx^{i_{k+1}}\wedge \ldots \wedge dx^{i_n} \end{aligned}

with coefficients

ϕi1ip(ϕ)ik+1in=g(nk)!ϵi1in gi1j1gikjkϕi1ik. \begin{aligned} \phi_{i_1 \ldots i_p} \leftrightarrow (*\phi)_{i_{k+1} \ldots i_n} = \frac{\sqrt{g}}{(n - k)!} \epsilon_{i_1 \ldots i_n}~ g^{i_1 j _1}\ldots g^{i_k j_k} \phi_{i_1 \ldots i_k}. \end{aligned}

The duality is up to a sign. i.e. ϕ=(1)k(nk)ϕ\ast\ast\phi = (-1)^{k (n - k)} \phi. The inner product of kk-forms is defined as

(ϕ,ψ)=Mϕψ=Using above definitions, we getMϕi1ik dxi1dxik(ϕ)ik+1in dxik+1dxin=Mϕi1ik(ϕ)ik+1in dxi1dxikdxik+1dxin=Mϕi1ik(ϕ)ik+1in dxi1dxin \begin{aligned} (\phi, \psi) &= \int_{\mathcal{M}} {\color{red}\phi} \wedge * \psi \\ &= \text{Using above definitions, we get}\\ &\quad \int_{\mathcal{M}} {\color{red}\phi_{i_1 \ldots i_k} ~dx^{i_1}\wedge \ldots \wedge dx^{i_k}} \wedge (*\phi)_{i_{k+1} \ldots i_n} ~ dx^{i_{k+1}}\wedge \ldots \wedge dx^{i_n}\\ &= \int_{\mathcal{M}} \phi_{i_1 \ldots i_k} (*\phi)_{i_{k+1} \ldots i_n} ~dx^{i_1}\wedge \ldots \wedge dx^{i_k} \wedge dx^{i_{k+1}}\wedge \ldots \wedge dx^{i_n} \\ &= \int_{\mathcal{M}} \phi_{i_1 \ldots i_k} (*\phi)_{i_{k+1} \ldots i_n} ~dx^{i_1}\wedge \ldots \wedge dx^{i_n} \\ \end{aligned}

and has a tensorial structure. It’s not easy to define a localized field. So, it is an open question of how to define it. Fortunately, with the quantum field theory that we learn from this book, our background metric is flat. So, we don’t have to worry about this issue. But, in quantum gravity, it’s an important question!

13P4B2

This expression is nonzero for all xx and tt, indicating that a particle can propagate between any two points in an arbitrarily short time. In a relativistic theory, this conclusion would signal a violation of causality.

output
  • Just for fun!

  • To see the output of the below script in the output cell in Jupyter Notebook, you need to add %%manim QFT13P4B2 at the top of the cell.

python
# Require: manim. See https://docs.manim.community/en/stable/installation/conda.html
# Usage: manim QFT13P4B2.py QFT13P4B2
# Usage to generate medium quality gif: manim -qm --format=gif QFT13P4B2.py QFT13P4B2

from manim import *
import numpy as np

class QFT13P4B2(Scene):
  def construct(self):
    # Write the U(t)
    equation = MathTex("U(t) = \\left(\\frac{m}{2\\pi i t}\\right)^{3/2} e^{i m (\\vec{x} - \\vec{x}_{0})^{2}/2t} \\quad \\forall~ x, t~?")
    self.play(Write(equation))

    # Move the U(t) to the upper left corner
    self.play(equation.animate.to_corner(UL))

    # Write a text
    particle_type = Text("Consider a free (point) particle:", t2c={'particle':RED}).scale(0.7).next_to(equation, 2*DOWN).shift(1.5*LEFT)
    self.play(Write(particle_type))

    # Show how the particles moves from x_0 to x where white line is the displacement.
    free_particle = Dot(color=RED).next_to(particle_type, 2.5*DOWN).shift(2*LEFT)

    initial_position = MathTex("\\vec{x}_{0}").next_to(free_particle, 0.1*LEFT).scale(0.7)  # label the initial position
    self.play(Write(initial_position))

    particle_path= VMobject()
    particle_path.set_points_as_corners([free_particle.get_center(), free_particle.get_center()])

    def update_particle_path(particle_path):
      previous_particle_path = particle_path.copy()
      previous_particle_path.add_points_as_corners([free_particle.get_center()])
      particle_path.become(previous_particle_path)

    particle_path.add_updater(update_particle_path)

    self.add(particle_path, free_particle)
    self.play(free_particle.animate.shift(11*RIGHT))

    final_position = MathTex("\\vec{x}\\equiv\\vec{x}_t").next_to(free_particle, 0.1*RIGHT).scale(0.7)  # label the final position
    self.play(Write(final_position))

    # Define the distance travelled by the particle. Assume Bohr radius
    distance_travel = MathTex("\\text{Let } ||\\vec{x}-\\vec{x}_{0}|| = 5.29 \\times 10^{-11}\\text{meters (i.e. Bohr radius) \\& } m = 1 \\text{ some mass unit}").next_to(particle_path, DOWN).scale(0.6)
    self.play(Write(distance_travel))

    # Evaluate the ratio (x - x_0)/c
    x_c_ratio = MathTex("\\text{So}, \\frac{||\\vec{x}-\\vec{x}_{0}||}{c} = \\frac{5.29 \\times 10^{-11}}{3 \\times 10^8} = 1.76333 \\times 10^{-19}\\text{ seconds}").next_to(distance_travel, DOWN).scale(0.6)
    self.play(Write(x_c_ratio))

    # Write again the U(t) with t < (x - x_0)/c
    equation_t = MathTex("\\text{So, taking } t < \\frac{||\\vec{x}-\\vec{x}_{0}||}{c} \\text{ in } U(t) = \\left(\\frac{m}{2\\pi i t}\\right)^{3/2} e^{i m (\\vec{x} - \\vec{x}_{0})^{2}/2t}")
    equation_t.next_to(x_c_ratio, 3*DOWN).scale(0.7)
    self.play(Write(equation_t))
    self.wait(.5)

    # Evaluate U(t) for t in [1e-18, 1e-20] < (x - x_0)/c
    t = np.linspace(1e-18, 1e-20, 15)
    U_t = (1/(2*np.pi*1j*t))**(3/2) * np.exp(1j * (5.29e-11)**2/(2*t))

    for i in range(0, len(t)):
      sign = "+" if U_t[i].imag >= 0 else "-"
      equation_te = MathTex("\\therefore~ U(" + str(f"{t[i]:.5e}".replace('e', ' \\times 10^{')) + "}" + ") = " + str(f"{U_t[i].real:.5e}".replace('e', ' \\times 10^{')) + "}" + sign + str(f"{abs(U_t[i].imag):.5e}".replace('e', ' \\times 10^{'))+ "}" + "i")
      equation_te.next_to(x_c_ratio, 3*DOWN).scale(0.7)

      self.play(Transform(equation_t, equation_te), run_time=.5)
      framebox = SurroundingRectangle(equation_te, buff=0.1, color=RED)

      if i == 0:
        self.play(Create(framebox))

      self.remove(equation_te)

In special relativity, any motion of a particle from x0\vec{x}_0 to x\vec{x} in a time tt faster than the speed of light violates causality (i.e. t<xx0ct < \frac{||\vec{x} - \vec{x}_0||}{c} where cc is the speed of light). This is because there is another inertial frame of reference in which the particle arrives at x\vec{x} at a time earlier than the time at which it leaves x0\vec{x}_0. Since the propagator U(t)U(t) is non-zero for t<xx0ct < \frac{||\vec{x} - \vec{x}_0||}{c}, this means that the same particle can be in two places at the same time. This is a violation of causality and is not allowed in special relativity theory. We will come back to this point later on pages 28-29 in the book.

13P4E8

… . In analogy with the non-relativistic case, we have

U(t)=xeitp2+m2x0=Using completeness relation, d3p(2π)3pp=1^=d3p(2π)3xeitp2+m2ppx0=1(2π)3d3p eitp2+m2xpx0p=Using xp=eipx.=1(2π)3d3p eitp2+m2eip(xx0). \begin{aligned} U(t) &= \braket{\vec{x} \vert e^{-i t \sqrt{\vec{p}^{2} + m^{2}}} \vert \vec{x}_{0}} \\ &= \text{Using completeness relation, } \int \frac{d^{3} \vec{p}}{(2\pi)^{3}} \ket{\vec{p}}\bra{\vec{p}} = \mathbb{\hat{1}} \\ &= \int \frac{d^{3} \vec{p}}{(2\pi)^{3}} \braket{\vec{x} \vert e^{-i t \sqrt{\vec{p}^{2} + m^{2}}} \ket{\vec{p}}\bra{\vec{p}}\vert \vec{x}_{0}} \\ &= \frac{1}{(2\pi)^{3}} \int d^{3}\vec{p} ~ e^{-i t \sqrt{\vec{p}^{2} + m^{2}}} \braket{\vec{x} \vert \vec{p}} \braket{\vec{x}_{0} \vert \vec{p}}^{\dagger} \\ &= \text{Using } \braket{\vec{x} \vert \vec{p}} = e^{i \vec{p}\cdot \vec{x}}.\\ &= \frac{1}{(2\pi)^{3}} \int d^{3}\vec{p} ~ e^{-i t \sqrt{\vec{p}^{2} + m^{2}}} e^{i \vec{p}\cdot (\vec{x} - \vec{x}_{0})}. \end{aligned}

Before we proceed, we do a transformation of momentum space in spherical (also called polar) coordinates (p,θ,ϕ)(p, \theta, \phi), and the volume element spanning from p\vec{p} to p+dp\vec{p} + d\vec{p}, θ\theta to θ+dθ\theta + d\theta and ϕ\phi to ϕ+dϕ\phi + d\phi is given by the determinant of the Jacobian matrix of partial derivatives. i.e.

dV:=d3p=(px,py,pz)(p,θ,ϕ)dp dθ dϕ=p2sin(θ)dp dθ dϕd3p=dϕsin(θ)dθ p2dp \begin{aligned} dV := d^{3} \vec{p} &= \left| \frac{\partial (p_x, p_y, p_z)}{\partial (\vec{p}, \theta, \phi)} \right| d\vec{p} ~d\theta~ d\phi\\ &= p^{2} \sin(\theta) d\vec{p} ~d\theta~ d\phi\\ \therefore d^{3}p &= d\phi \sin(\theta) d\theta ~p^{2} d\vec{p} \end{aligned}

Now,

U(t)=Using p.(xx0)=pxx0cos(θ),& spherical coordinate in momentum space=1(2π)3dϕsin(θ)dθ p2dp eitp2+m2 eipxx0cos(θ)=1(2π)3[02πdϕ]sin(θ)dθ p2dp eitp2+m2 eipxx0cos(θ)=2π(2π)3dp p2 eitp2+m2[0πsin(θ)dθ eipxx0cos(θ)]=Do change of variable: ζ=cos(θ)    dζ=sin(θ)dθ=1(2π)2dp p2 eitp2+m2[(1)11dζ eipxx0ζ]=Since, dx eax=eaxa+constant.=1(2π)2dp p2 eitp2+m2(1)[eipxx0ζipxx0]1  1=1(2π)2xx0dp p eitp2+m2(eipxx0eipxx0i)=Using sin(x)=eixeix2i.=1(2π)2xx0dp p eitp2+m2(2)sin(pxx0)=12π2xx00dp psin(pxx0) eitp2+m2. \begin{aligned} U(t) &= \text{Using } \vec{p}.(\vec{x} - \vec{x}_{0}) = p | \vec{x} - \vec{x}_{0}| \cos(\theta), \\ &\hspace{0.5cm} \text{\& spherical coordinate in momentum space}\\ &= \frac{1}{(2\pi)^{3}}\int d\phi \sin(\theta) d\theta ~p^2 d\vec{p} ~ e^{-i t \sqrt{p^2 + m^2}} ~e^{i p | \vec{x} - \vec{x}_{0}| \cos(\theta)} \\ &= \frac{1}{(2\pi)^{3}} \left[ \int_{0}^{2\pi} d\phi \right] \int \sin(\theta) d\theta ~p^2 d\vec{p} ~ e^{-i t \sqrt{p^2 + m^2}} ~e^{i p | \vec{x} - \vec{x}_{0}| \cos(\theta)} \\ &= \frac{\cancel{2\pi}}{(2\pi)^{\cancel{3}}} \int d\vec{p} ~p^2 ~ e^{-i t \sqrt{p^2 + m^2}} \left[ \int_{0}^{\pi}\sin(\theta) d\theta ~e^{i p | \vec{x} - \vec{x}_{0}| \cos(\theta)} \right]\\ &= \text{Do change of variable: } \zeta = \cos(\theta) \implies -d\zeta = \sin(\theta) d\theta\\ &= \frac{1}{(2\pi)^{2}} \int d\vec{p} ~p^2 ~ e^{-i t \sqrt{p^2 + m^2}} \left[ (-1) \int_{1}^{-1} d\zeta~ e^{i p |\vec{x} - \vec{x}_{0}| \zeta} \right]\\ &= \text{Since, } \int dx ~ e^{a x} = \frac{e^{a x}}{a} + \text{constant}.\\ &= \frac{1}{(2\pi)^{2}} \int d\vec{p} ~p^{\cancel{2}} ~ e^{-i t \sqrt{p^2 + m^2}} (-1) \left[ \frac{e^{i p |\vec{x} - \vec{x}_{0}|\zeta}}{i \cancel{p} |\vec{x} - \vec{x}_{0}|} \right]_{-1}^{~~1}\\ &= \frac{1}{(2\pi)^{2} |\vec{x} - \vec{x}_{0}|} \int d\vec{p} ~p ~ e^{-i t \sqrt{p^2 + m^2}} \left( \frac{e^{i p |\vec{x} - \vec{x}_{0}|} - e^{-i p |\vec{x} - \vec{x}_{0}|}}{i}\right)\\ &= \text{Using } \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}.\\ &= \frac{1}{(2\pi)^{2} |\vec{x} - \vec{x}_{0}|} \int d\vec{p} ~p ~ e^{-i t \sqrt{p^2 + m^2}} (2) \sin(p |\vec{x} - \vec{x}_{0}|)\\ &= \frac{1}{2 \pi^{2} |\vec{x} - \vec{x}_{0}|} \int_{0}^{\infty} d\vec{p} ~p \sin(p |\vec{x} - \vec{x}_{0}|) ~ e^{-i t \sqrt{p^2 + m^2}}. \end{aligned}

13P4B3S1

This integral can be evaluated explicitly in terms of Bessel functions. Using the integral formula given in “2007 - Gradshteyn, Rhyzik- Table of Integrals, Series and Products”, page 491, formula number 3.914 (6) to the final expression of 13P4E8: 0xeβγ2+x2sin(bx)dx=bβγ2β2+b2K2(γβ2+b2) \int_0^\infty x e^{-\beta \sqrt{\gamma^2 + x^2}} \sin(bx) dx = \frac{b \beta \gamma^2}{\beta^2 + b^2} K_{2}( \gamma \sqrt{\beta^2 + b^2}) where K2K_{2} is the modified Bessel function of the second kind.

Here, x    p,β    it,γ    m,b    xx0x \implies p, \beta \implies i t, \gamma \implies m, b \implies |\vec{x} - \vec{x}_{0}|, so we get

U(t)=12π2xx0xx0(it)m2(it)2+xx02K2(m(it)2+xx02)=itm22π2(xx02t2)K2(mxx02t2) \begin{aligned} U(t) &= \frac{1}{2 \pi^{2} \cancel{|\vec{x} - \vec{x}_{0}|}} \frac{\cancel{|\vec{x} - \vec{x}_{0}|} (i t) m^{2}}{(i t)^{2} + |\vec{x} - \vec{x}_{0}|^{2}} K_{2}(m \sqrt{(i t)^{2} + |\vec{x} - \vec{x}_{0}|^{2}}) \\ &= \frac{i t m^{2}}{2 \pi^{2} (|\vec{x} - \vec{x}_{0}|^{2} - t^{2})} K_{2}(m \sqrt{|\vec{x} - \vec{x}_{0}|^{2} - t^{2}}) \end{aligned}

13P4B3S2

… with looking at its asymptotic behavior for x2t2x^2 \gg t^2 (well outside the light-cone), using the method of stationary phase. The function pxtp2+m2px - t \sqrt{p^{2} + m^{2}} has a stationary point at p=imx/x2t2p = imx/\sqrt{x^{2} - t^{2}}. Plugging in this value for pp, we find that, upto a rational function of xx and tt, U(t)emx2t2.U(t) \sim e^{-m \sqrt{x^2 - t^2}}.

Instead of transforming the above integral (defined in 13P4E8) to momentum space, we can also use the idea of stationary phase approximation to evaluate the integral.

Our objective here is to evaluate the integral into the asymptotic expansion from a stationary phase point up to the leading term of the contribution. This is the main idea of the “method of stationary phase”.

Before proceeding, let’s briefly review the method of the stationary phase.

I will be following chapter 6 ("hh-Transforms with Oscillatory Kernels") from the book “Bleistein, Handelsman - Asymptotic Expansions of Integrals”.

Method of Stationary Phase

We consider the asymptotic expansion (as λ\lambda \to \infty) of integral(s) of the form: I(λ)=abexp{iλϕ(t)} f(t) dt I(\lambda) = \int_{a}^{b} \exp\{i \lambda \phi(t)\}~ f(t)~dt where ϕ(t)R\phi(t) \in \mathbb{R} is the phase function and f(t)f(t) is an amplitude function; similar like in the Fourier integral.

Don’t be confused I(λ)I(\lambda) with Riemann–Lebesgue lemma. But, this is a useful tool in QFT which we will see its usage later. For example, in asymptotic state calculation using LSZ reduction formula for computing S-matrix.

If ff and ϕ\phi are infinitely differentiable (CC^{\infty}), and ϕ\phi is monotonic on [a,b][a, b], then an infinite asymptotic expansion of the above integral I(λ)I(\lambda) can be obtained via the integration-by-parts procedure. If the first derivative of ϕ\phi vanishes at cc then, cc is a stationary point of ϕ\phi.

If the derivative of a function ϕ\phi at point cc is equal to zero or undefined then, such a point is called critical point.

So, the aim is to find the leading term of the contribution to the asymptotic expansion from such a stationary point. If λ\lambda \to \infty then, there will be a rapid oscillation of the real and imaginary parts of exp{iλϕ}\exp\{i\lambda \phi\}. This rapid oscillation will cancel out the contribution of an infinite expansion, in turn, it tends to decrease the value of Ic(λ)I_{c}(\lambda). You should note that how large λ\lambda is, there exists a neighborhood of cc though-out which (λ×ϕ)(\lambda \times \phi) does not change rapidly. Thus, the cancellation of the oscillations will be less effective in this neighborhood. So, the contribution of the asymptotic expansion from the stationary point cc will be dominant. This is the idea of method of stationary phase. Thus, the integral I(λ)I(\lambda) can be approximated by the stationary phase approximation as I(λ)Ic(λ)I(\lambda) \approx I_{c}(\lambda) and given by I(λ)exp{iλϕ(c)}f(c)2πλϕ(c)exp{πiμ4} \boxed{I(\lambda) \approx \exp\{i\lambda \phi(c)\} f(c) \sqrt{\frac{2\pi}{\lambda |\phi^{\prime\prime}(c)|}} \exp\left\{\frac{\pi i \mu}{4}\right\}} where μ:=sgn(ϕ(c))\mu := \text{sgn}(\phi^{\prime\prime}(c)) (i.e. (overall) sign of the second derivative of ϕ\phi at cc).

Now, let’s apply the above idea to our problem. We have,

U(t)=1(2π)3d3p ei(pxtp2+m2) eipx0, U(t) = \frac{1}{(2\pi)^3} \int d^{3}p ~ e^{i\left(\textcolor{green}{\vec{p}\cdot \vec{x} - t \sqrt{p^{2} + m^{2}}}\right)} ~e^{-i \vec{p}\cdot\vec{x}_{0}}, the phase function of U(t)U(t) is, ϕ(p)=pxtp2+m2\phi(\vec{p}) = \textcolor{green}{\vec{p}\cdot \vec{x} - t \sqrt{p^{2} + m^{2}}}.

To be consistent with the book’s text, we use pp instead of cc to denote the stationary point (i.e. p\vec{p} is variable, and pp is a point for evaluation). The stationary point can be achieved by solving dϕ(p)dpp=p=0\left.\frac{d\phi(\vec{p})}{d\vec{p}} \right\vert_{\vec{p} = p} = 0. See the “vector derivative cheat sheet” if you’re reluctant to do it. We proceed

dϕ(p)dpp=p=0or, xt2(p2+m2)1212p=0or, xtpp2+m2=0or, xp2+m2=tpor, x2(p2+m2)=t2p2or, p2(x2t2)=x2m2  p=imx/x2t2 \begin{aligned} &\left.\frac{d\phi(\vec{p})}{d\vec{p}} \right\rvert_{\vec{p} = p} = 0\\ \text{or, }& x - \frac{t}{\cancel{2}} (p^2 + m^2)^{\frac{1}{2} - 1} \cancel{2}p = 0 \\ \text{or, }& x - \frac{t p}{\sqrt{p^2 + m^2}} = 0 \\ \text{or, }& x\sqrt{p^2 + m^2} = tp \\ \text{or, }& x^{2} (p^2 + m^2) = t^2 p^2 \\ \text{or, }& p^{2}(x^2 - t^2) = -x^2 m^2 \\ \therefore ~&~ p = i m x / \sqrt{x^2 - t^2} \end{aligned}

such that x>tx > t. Since we want to do asymptotic expansion, we fine-tune pp such that (x2t2)    x2t2(x^{2} - t^{2}) \to \infty \implies x^2 \gg t^2. This means the asymptotic expansion holds only when x2t2x^2 \gg t^2. The inequality (\gg) can be accounted for by re-defining ϕ\phi as new ϕ:=λϕ\phi := \lambda \phi (see below). I’m using the same symbol ϕ\phi for new and old ϕ\phi to account for inequality. Note that it does not influence the calculation because we want to see if the observable exists well outside the light-cone. Thus, the new ϕ\phi will have a rapid oscillation. So, the Ip(λ)I_{p}(\lambda) becomes IpI_{p} such that

Iexp{iϕ(p)}f(p)2πϕ(p)exp{πiμ4}. \boxed{I \approx \exp\{i \phi(p)\} f(p) \sqrt{\frac{2\pi}{|\phi^{\prime\prime}(p)|}} \exp\left\{\frac{\pi i \mu}{4}\right\}}.

Keep in mind that we are only going to compute ϕ(p)p=p\left.\phi(\vec{p})\right\vert_{\vec{p}=p} and we show U(t)U(t) does not vanish (which we already know from 13P4E8). Let’s move forward,

ϕ(p)p=p=pxtp2+m2=imxx2t2xt(imxx2t2)2+m2=imx2x2t2tm2x2x2t2+m2=imx2x2t2tm2x2+m2x2m2t2x2t2=imx2t(imt)x2t2=im(x2t2)x2t2=imx2t2=Redefine ϕ(p)λϕ(p)x2t2λ exp{iϕ(p)}=exp{mx2t2}. \begin{aligned} \left.\phi(\vec{p})\right\vert_{\vec{p}=p} &= \htmlId{redefine-phi-lambda-phi}{p\cdot \vec{x} - t \sqrt{p^{2} + m^{2}}}\\ &= \frac{im\textcolor{blue}{\vec{x}}}{\sqrt{x^2 - t^2}}\cdot \textcolor{blue}{\vec{x}} - t\sqrt{\left( \frac{\textcolor{red}{i}m\vec{x}}{\sqrt{x^2 - t^2}}\right)^2 + m^2} \\ &= \frac{im \textcolor{blue}{x^2}}{\sqrt{x^2 - t^2}} - t \sqrt{\frac{\textcolor{red}{-}m^{2}x^{2}}{x^2 - t^2} + m^2} \\ &= \frac{im \textcolor{blue}{x^2}}{\sqrt{x^2 - t^2}} - t \sqrt{\frac{-\cancel{m^{2}x^{2}} + \cancel{m^{2}x^{2}} - m^{2}t^{2}}{x^{2} - t^{2}}} \\ &= \frac{imx^{2} - t (imt)}{\sqrt{x^{2} - t^{2}}} \\ &= \frac{im \cancel{(x^2 - t^2)}}{\cancel{\sqrt{x^2 - t^2}}}\\ &= i m \sqrt{x^2 - t^2}\\ &= \text{Redefine $\phi(p) \to \lambda\phi(p)\mid x^2 \gg t^2 \Harr \lambda \to \infty$ }\\ \therefore \exp\left\{i\phi(p)\right\} &= \exp\left\{- m \sqrt{x^2 - t^2}\right\}. \end{aligned}

We get U(t)emx2t2. U(t) \sim e^{- m \sqrt{x^2 - t^2}}.

Thus the propagation amplitude is small but nonzero outside the light-cone, and causality is still violated.

Noether Theorem

17E(2.11)-(2.12)

Consider infinitesimal form L(x)L(x)=L(x)+αΔL(x)\mathcal{L}(x) \to \mathcal{L^{\prime}}(x) = \mathcal{L}(x) + \alpha \Delta\mathcal{L}(x). Note that L(x)\mathcal{L}(x) and L\mathcal{L} mean the same. So, αΔL=LL:=δL\alpha\Delta\mathcal{L} = \mathcal{L^{\prime}} - \mathcal{L} := \delta \mathcal{L}. We can write:

αΔL=δL=Using the definition of the partial derivative.=Lϕδϕ+(L(μϕ))δ(μϕ)=Using eqn (2.9) i.e. δϕ=αΔϕ and δ(μϕ)=μ(δϕ)=μ(αΔϕ)=Lϕ(αΔϕ)+(L(μϕ))μ(αΔϕ)=Using chain rule in the red colored equation.=αLϕ(Δϕ)+μ(L(μϕ)(αΔϕ))μ(L(μϕ))(αΔϕ)=αμ(L(μϕ)Δϕ)+α[Lϕμ(L(μϕ))]Δϕ(2.11)=Green colored equation is EOM (2.3) equals to 0.=αμ(L(μϕ)Δϕ) \begin{aligned} \alpha\Delta\mathcal{L} &= \delta\mathcal{L} \\ &= \text{Using the definition of the partial derivative.} \\ &= \frac{\partial \mathcal{L}}{\partial \phi} \delta\phi + \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \right) \delta(\partial_{\mu}\phi) \\ &= \text{Using eqn (2.9) i.e. } \delta\phi = \alpha\Delta\phi \text{ and } \delta(\partial_{\mu}\phi) = \partial_{\mu} (\delta\phi) = \partial_{\mu}(\alpha\Delta\phi) \\ &= \frac{\partial \mathcal{L}}{\partial \phi} (\alpha\Delta\phi) + {\color{red} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \right) \partial_{\mu}(\alpha\Delta\phi)} \\ &= \text{Using chain rule in the red colored equation.} \\ &= \alpha \frac{\partial \mathcal{L}}{\partial \phi} (\Delta\phi) + {\color{red} \partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} (\alpha\Delta\phi) \right) - \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \right) (\alpha\Delta\phi)} \\ &= \alpha \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \Delta\phi \right) + \alpha \left[ {\color{green}\frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \right)} \right] \Delta\phi \quad (2.11) \\ &= \text{Green colored equation is EOM (2.3) equals to 0.} \\ &= \alpha \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \Delta\phi \right) \end{aligned}

Comparing the above result with eqn (2.10). We get ΔL=μJμ(x)\Delta\mathcal{L} = \partial_{\mu}\mathcal{J}^{\mu}(x). i.e.

μJμ(x)=μ(L(μϕ)Δϕ)μ(L(μϕ)ΔϕJμ):=μjμ(x)=0.(2.12) \begin{aligned} \partial_{\mu}\mathcal{J}^{\mu}(x) &= \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \Delta\phi \right) \\ \therefore \partial_{\mu} \left( {\color{blue}\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \Delta\phi - \mathcal{J}^{\mu}} \right) &:= \partial_{\mu}{\color{blue}j^{\mu}(x)} = 0. \quad (2.12) \end{aligned}

The blue-colored equation is defined as current. The eqn (2.12) means the divergence of current vanishes.

If the symmetry involves more than one field (say ϕ1,ϕ2,,ϕ(n)\phi_{1}, \phi_{2}, \ldots, \phi(n)), the first term of the eqn (2.12) for jμ(x)j^{\mu}(x) should be replaced by a sum of such terms, one for each field. i.e.

μ=03L(μϕ)ΔϕbyReplacei=1nμ=03L(μϕi)ΔϕiIn Einstein’s convention, L(μϕi)Δϕi \begin{aligned} \displaystyle\sum_{\mu=0}^3 \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \Delta\phi &\xrightarrow[\text{by}]{\text{Replace}} \displaystyle\sum_{i=1}^n \displaystyle\sum_{\mu=0}^3\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi_{i})} \Delta\phi_{i} \\ &\equiv \text{In Einstein's convention, } \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi_{i})} \Delta\phi_{i} \end{aligned}

Note: Einstein’s convention means we sum over repeated indices. These indices we call dummy indices, as you can relabel them as you like. We will use Einstein’s convention most of the time unless it needs explicit form.

18P2B0

… so we conclude that the current jμ=μϕj^{\mu} = \partial^{\mu}\phi.

Given L=12(μϕ)212(μϕ)(μϕ)\mathcal{L} = \frac{1}{2}(\partial_{\mu}\phi)^{2} \equiv \frac{1}{2} (\partial_{\mu}\phi)(\partial^{\mu}\phi) and ϕϕ+α\phi \to \phi + \alpha so deformation of field Δϕ=1\Delta\phi = 1 i.e. we only rescale our field ϕ\phi by scale α\alpha. Our Lagrangian is scale invariance (a symmetry) because μα=0\partial_{\mu}\alpha = 0. Thus, we demand one conservation law because of Noether’s theorem. Note we assume Jμ=0\mathcal{J}^{\mu} = 0. Hence, the current is

jμ=L(μϕ)ΔϕJμ=L(μϕ)=12((μϕ)(μϕ))(μϕ)=12[(μϕ)(μϕ)(μϕ)+(μϕ)(μϕ)(μϕ)]=Using μ=gμνν.=12[μϕ+(μϕ)gμν(νϕ)(μϕ)]=12[μϕ+(μϕ)gμνδμν]where (νϕ)(μϕ)=δμν:= Kronecker delta.=12[μϕ+(μϕ)gμνδμν]=12[μϕ+(νϕ)δμν]=12[μϕ+μϕ]jμ=μϕ. \begin{aligned} j^{\mu} &= \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \Delta\phi - \mathcal{J}^{\mu} \\ &= \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \\ &= \frac{1}{2}\frac{\partial \left( (\partial_{\mu}\phi)(\partial^{\mu}\phi) \right)}{\partial (\partial_{\mu}\phi)} \\ &= \frac{1}{2} \left[ \frac{\partial (\partial_{\mu}\phi)}{\partial (\partial_{\mu}\phi)} (\partial^{\mu}\phi) + (\partial_{\mu}\phi) \frac{\partial ({\color{green}\partial^{\mu}}\phi)}{\partial (\partial_{\mu}\phi)} \right] \\ &= \text{Using } {\color{green}\partial^{\mu} = g^{\mu\nu} \partial_{\nu}}. \\ &= \frac{1}{2} \left[ \partial^{\mu}\phi + (\partial_{\mu}\phi) {\color{green}g^{\mu\nu}} \frac{\partial ({\color{green}\partial_{\nu}}\phi)}{\partial (\partial_{\mu}\phi)}\right] \\ &= \frac{1}{2} \left[ \partial^{\mu}\phi + (\partial_{\mu}\phi) g^{\mu\nu} \delta^{\nu}_{\mu} \right] \\ &\quad \text{where } \frac{\partial (\partial_{\nu}\phi)}{\partial (\partial_{\mu}\phi)} = \delta^{\nu}_{\mu} := \text{ Kronecker delta}. \\ &= \frac{1}{2} \left[ \partial^{\mu}\phi + (\partial_{\mu}\phi) g^{\mu\nu} \delta^{\nu}_{\mu} \right] \\ &= \frac{1}{2} \left[ \partial^{\mu}\phi + {\color{red}(\partial^{\nu}\phi) \delta^{\nu}_{\mu}} \right] \\ &= \frac{1}{2} \left[ \partial^{\mu}\phi + {\color{red}\partial^{\mu}\phi} \right] \\ \therefore j^{\mu} &= \partial^{\mu} \phi. \end{aligned}

18P2E(2.15)-(2.16)

Given the Lagrangian for complex scalar field, L=μϕ2m2ϕ2(μϕ)(μϕ)m2ϕϕ(2.14)\mathcal{L} = |\partial_{\mu}\phi |^{2} - m^{2}|\phi|^{2} \equiv (\partial_{\mu}\phi)(\partial^{\mu}\phi^{*}) - m^{2} \phi\phi^{*} \quad (2.14) … the transformation ϕeiαϕ\phi \to e^{i\alpha}\phi; for an infinitesimal transformation with O(α2)\mathcal{O}(\alpha^{2}) we have

ϕϕ=eiαϕ=Under infinitesimal transformation=(1+iα)ϕ=ϕ+iαϕ \begin{aligned} \phi \to \phi' &= e^{i\alpha} \phi \\ &= \text{Under infinitesimal transformation}\\ &= (1 + i\alpha)\phi \\ &= \phi + i\alpha\phi \end{aligned}

Similarly,

ϕϕ(ϕ)=(eiαϕ)=eiαϕ=Under infinitesimal transformation=(1iα)ϕ=ϕiαϕ \begin{aligned} \phi^{*} \to {\phi^{*}}' &\equiv (\phi')^{*} = (e^{i\alpha} \phi)^{*} = e^{-i\alpha} \phi^{*} \\ &= \text{Under infinitesimal transformation}\\ &= (1 - i\alpha)\phi^{*} \\ &= \phi^{*} - i\alpha\phi^{*} \end{aligned}

Comparing above results with ϕϕ=ϕ+αΔϕ\phi \to \phi' = \phi + \alpha\Delta\phi and ϕϕ=ϕ+αΔϕ\phi \to {\phi^{*}}' = \phi^{*} + \alpha\Delta\phi^{*} respectively. We get Δϕ=iϕ\Delta\phi = i\phi and Δϕ=iϕ(2.15)\Delta\phi^{*} = -i\phi^{*}\quad (2.15).

… conserved Noether current is

jμ=i=1nL(μϕi)ΔϕiJμSince, Jμ=0=L(μϕ)Δϕ+L(μϕ)Δϕ=[(μϕ)(μϕ)m2ϕϕ](μϕ)(iϕ)+[(μϕ)(μϕ)m2ϕϕ](μϕ)(iϕ)=Note that (ϕϕ)(μϕ)=0. Also, ϕ and ϕ are independent fields.Using Leibniz product rule.=(μϕ)(iϕ)(μϕ)gμν(νϕ)(μϕ)(iϕ)=i[(μϕ)ϕϕ(μϕ)gμνδμν]=i[(μϕ)ϕϕ(μϕ)](2.16) \begin{aligned} j^{\mu} &= \displaystyle\sum_{i=1}^n \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi_{i})} \Delta\phi_{i} - \mathcal{J}^{\mu} \\ &\quad \text{Since, } \mathcal{J}^{\mu} = 0 \\ &= {\color{red}\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \Delta\phi} + {\color{green}\frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi^{*})} \Delta\phi^{*}} \\ &= {\color{red} \frac{\partial [(\partial_{\mu}\phi)(\partial^{\mu}\phi^{*}) - m^{2} \phi\phi^{*}]}{\partial (\partial_{\mu}\phi)}} (i\phi) + {\color{green} \frac{\partial [(\partial_{\mu}\phi)(\partial^{\mu}\phi^{*}) - m^{2} \phi\phi^{*}]}{\partial (\partial_{\mu}\phi^{*})}} (-i\phi^{*}) \\ &= \text{Note that } \frac{\partial (\phi\phi^{*})}{\partial (\partial_{\mu}\phi)} = 0. \text{ Also, $\phi$ and $\phi^{*}$ are independent fields.}\\ &\hspace{.5cm} \text{Using \href{https://en.wikipedia.org/wiki/Product_rule}{Leibniz product rule.}} \\ &= {\color{red} (\partial^{\mu}\phi^{*}) (i\phi)} - {\color{green} (\partial_{\mu}\phi) g^{\mu\nu}\frac{\partial (\partial_{\nu}\phi^{*})}{\partial (\partial_{\mu}\phi^{*})} (i\phi^{*})} \\ &= i [(\partial^{\mu}\phi^{*})\phi - \phi^{*} (\partial_{\mu}\phi)g^{\mu\nu}\delta^{\nu}_{\mu}]\\ &= i[(\partial^{\mu}\phi^{*})\phi - \phi^{*}(\partial^{\mu}\phi)] \quad (2.16) \end{aligned}

18P2B3

… the divergence of this current vanishes by using the Klein-Gordon equation. i.e.

μjμ=i[μ{(μϕ)ϕ}μ{ϕ(μϕ)}]=Using product rule.=i[(μμϕ)ϕ+(μϕ)(μϕ)(μϕ)(μϕ)ϕ(μμϕ)]=μμμμ:=2 called as d’Alembertian, and(μϕ)(μϕ)(μϕ)(μϕ)μϕ2.=i[(2ϕ)ϕϕ(2ϕ)]=Using Euler-Lagrange EOM: Lϕμ(L(μϕ))=0or, m2ϕμμϕ=0(2+m2)ϕ=0 is Klein-Gordon eqn.(2.7)or, 2ϕ=m2ϕ×ϕ both sides(2ϕ)ϕ=m2ϕϕm2ϕ2Similarly, Lϕμ(L(μϕ))=0or, m2ϕμ[μϕ(μϕ)(μϕ)]=0or, m2ϕμ[μϕ gμν (νϕ)(μϕ)]=0or, m2ϕμ[νϕ δμν]=0or, m2ϕμμϕ=0or, 2ϕ=m2ϕ×ϕ from leftϕ2ϕ=m2ϕ2Substituting the acquired identities.=i[m2ϕ2+m2ϕ2]=0. \begin{aligned} \partial_{\mu} j^{\mu} &= i[\partial_{\mu}\{(\partial^{\mu}\phi^{*})\phi\} - \partial_{\mu}\{\phi^{*}(\partial^{\mu}\phi)\}] \\ &= \text{Using product rule.} \\ &= i [(\partial_{\mu}\partial^{\mu} \phi^{*})\phi + \cancel{(\partial^{\mu}\phi^{*})(\partial_{\mu}\phi)} - \cancel{(\partial_{\mu}\phi^{*})(\partial^{\mu}\phi)} - \phi^{*}(\partial_{\mu}\partial^{\mu}\phi)] \\ &= \partial_{\mu}\partial^{\mu} \equiv \partial^{\mu}\partial_{\mu} := \square^{2} \text{ called as d'Alembertian, and} \\ &\quad (\partial^{\mu}\phi^{*})(\partial_{\mu}\phi) \equiv (\partial_{\mu}\phi^{*})(\partial^{\mu}\phi) \equiv |\partial_{\mu}\phi|^{2}. \\ &= i [(\square^{2}\phi^{*})\phi - \phi^{*}(\square^{2}\phi)] \\ &= \text{Using Euler-Lagrange EOM: } \\ &\quad\quad \frac{\partial \mathcal{L}}{\partial \phi} - \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi)} \right) = 0 \\ &\quad\quad \text{or, } -m^{2}\phi^{*} - \partial_{\mu}\partial^{\mu}\phi^{*} = 0 \\ &\quad\quad \therefore (\square^{2} + m^{2})\phi^{*} = 0 \text{ is Klein-Gordon eqn.}\quad (2.7) \\ &\quad\quad\text{or, } \square^{2}\phi^{*} = -m^{2}\phi^{*}\quad \times \phi \text{ both sides} \\ &\quad\quad \therefore (\square^{2}\phi^{*})\phi = -m^{2}\phi^{*}\phi \equiv -m^{2} |\phi|^{2}\\ &\quad \text{Similarly, } \\ &\quad\quad \frac{\partial \mathcal{L}}{\partial \phi^{*}} - \partial_{\mu}\left( \frac{\partial \mathcal{L}}{\partial (\partial_{\mu}\phi^{*})} \right) = 0 \\ &\quad\quad \text{or, } -m^{2}\phi - \partial_{\mu} \left[ \partial_{\mu}\phi \frac{\partial(\partial^{\mu}\phi^{*}) }{\partial (\partial_{\mu}\phi^{*})} \right] = 0 \\ &\quad\quad \text{or, } -m^{2}\phi - \partial_{\mu} \left[ \partial_{\mu}\phi ~g^{\mu\nu}~ \frac{\partial (\partial_{\nu}\phi^{*})}{\partial (\partial_{\mu}\phi^{*})}\right] = 0 \\ &\quad\quad \text{or, } -m^{2}\phi - \partial_{\mu}[\partial^{\nu}\phi~ \delta^{\nu}_{\mu}] = 0 \\ &\quad\quad \text{or, } -m^{2}\phi - \partial_{\mu}\partial^{\mu}\phi = 0 \\ &\quad\quad \text{or, } \square^{2}\phi = -m^{2}\phi \quad \times \phi^{*} \text{ from left} \\ &\quad\quad \therefore \phi^{*}\square^{2}\phi = -m^{2}|\phi|^{2}\\ &\quad \text{Substituting the acquired identities.} \\ &= i[-\cancel{m^{2}|\phi|^{2}} + \cancel{m^{2}|\phi|^{2}}] \\ &= 0. \end{aligned}

Note: we’re using the d’Alembertian operator (or simply d’Alembertian) as 2\square^{2} but other books might write just \square.

19E(2.17)-(2.19)

Noether’s theorem can also be applied to spacetime transformations such as translations and rotations. We can describe the infinitesimal translation xμxμaμx^{\mu} \to x^{\mu} - a^{\mu} alternatively as a transformation of the field configuration ϕ(x)ϕ(x+a)=ϕ(x)+aμμϕ(x).\phi(x) \to \phi(x + a) = \phi(x) + a^{\mu}\partial_{\mu}\phi(x).

This and previously (2.9)(2.9), we did infinitesimal transformations of the fields as a Taylor expansion up to the first order in fields and their derivatives.

We can write δϕ(x):=ϕ(x+a)ϕ(x)=aμμϕ(x)\delta\phi(x) := \phi(x + a) - \phi(x) = a^{\mu}\partial_{\mu}\phi(x).

The Lagrangian is also a scalar, so it must transform in the same way: LL+aμμLL+aνμ(δμνL).\mathcal{L} \to \mathcal{L} + a^{\mu}\partial_{\mu}\mathcal{L} \equiv \mathcal{L} + a^{\nu} \partial_{\mu}(\delta^{\mu}{}_{\nu}\mathcal{L}).

aνμ(δμνL)=δL(x)=Since, LL(ϕ(x),μϕ(x)). we writeLϕδϕ+(L(μϕ))δ(μϕ)=Lϕδϕ+(L(μϕ))μ(δϕ)=Substituting δϕ=aννϕ, and using Leibniz product rule:Lϕ(aννϕ)+μ(L(μϕ)(aννϕ))μ(L(μϕ))(aννϕ)=Since, aν is just a constant, i.e. not a function of x. So,We can take aν out of the derivative. We getaν[Lϕμ(L(μϕ))]νϕ+aνμ(L(μϕ)νϕ)=Red color expression is zero due to Euler-Lagrange eqn.aνμ[L(μϕ)νϕδμνL]=0. \begin{align*} a^{\nu} \partial_{\mu}(\delta^{\mu}{}_{\nu}\mathcal{L})&= \delta \mathcal{L}(x) \\ &= \text{Since, } \mathcal{L} \equiv \mathcal{L}(\phi(x), \partial_{\mu}\phi(x)) \text{. we write}\\ &\hspace{.5cm} \frac{\partial\mathcal{L}}{\partial\phi} \delta\phi + \left( \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)} \right) {\color{green}\delta(\partial_{\mu} \phi)} \\ &= \frac{\partial\mathcal{L}}{\partial\phi} \delta\phi + \left( \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)} \right) {\color{green}\partial_{\mu}(\delta\phi)} \\ &= \text{Substituting } \delta\phi = a^{\nu}\partial_{\nu}\phi, \text{ and using Leibniz product rule:}\\ &\hspace{.5cm} \frac{\partial\mathcal{L}}{\partial\phi} (a^{\nu}\partial_{\nu}\phi) + \partial_{\mu} \left( \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)} (a^{\nu}\partial_{\nu}\phi) \right) - \partial_{\mu} \left( \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)}\right) (a^{\nu}\partial_{\nu}\phi)\\ &= \text{Since, } a^{\nu} \text{ is just a constant, i.e. not a function of } x. \text{ So,}\\ &\hspace{.5cm} \text{We can take } a^{\nu} \text{ out of the derivative. We get}\\ &\hspace{.5cm} a^{\nu} {\color{red}\left[ \frac{\partial\mathcal{L}}{\partial\phi} - \partial_{\mu} \left(\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)} \right) \right]} \partial_{\nu}\phi + a^{\nu }\partial_{\mu} \left( \frac{\partial\mathcal{L}}{\partial (\partial_{\mu} \phi)} \partial_{\nu}\phi \right)\\ &= \text{{\color{red}Red color expression is zero} due to Euler-Lagrange eqn.}\\ \therefore a^{\nu} &\partial_{\mu}\left[ {\color{blue}\frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial_{\nu}\phi - \delta^{\mu}{}_{\nu}\mathcal{L}} \right]= 0.\\ \end{align*}

The blue color expression is defined as Noether conserved 4-currents Tμν{\color{blue} T^{\mu}{}_{\nu}}.

Tμν:=L(μϕ)νϕLδμν(2.17) T^{\mu}{}_{\nu} := \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial_{\nu}\phi - \mathcal{L} \delta^{\mu}{}_{\nu} \quad (2.17)

This is precisely the stress-energy tensor, also called the energy-momemtum tensor, of the field ϕ\phi.

Now, we are going to prove equations (2.18)(2.18) (that Hamiltonian density H\mathcal{H} equals to T00T^{00}) and (2.19)(2.19) (that momentum density Π\Pi times the velocity of the field ϕ\phi equals to T0iT^{0i}). We start from

TμρgρνTμν=gρν(L(μϕ)νϕLδμν). \begin{align*} T^{\mu\rho} \equiv g^{\rho\nu} T^{\mu}{}_{\nu} = g^{\rho\nu} \left( \frac{\partial\mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial_{\nu}\phi - \mathcal{L} \delta^{\mu}{}_{\nu} \right). \end{align*}

Note that the metric tensor gρν:=diag(+1,1,1,1) else 0g^{\rho\nu} := \text{diag}(+1, -1, -1, -1) \text{ else } 0. So,

T00=g00(L(0ϕ)0ϕLδ00)=Substituting the canonical momentum π:=Lϕ˙ givesπϕ˙Lis a Legendre transformation for Hamiltonian formulation.=H. \begin{align*} T^{00} &= g^{00} \left( {\color{green}\frac{\partial\mathcal{L}}{\partial(\partial_{0}\phi)}} \partial_{0}\phi - \mathcal{L} \delta^{0}{}_{0} \right) \\ &= \text{Substituting the canonical momentum } {\color{green}\pi := \frac{\partial\mathcal{L}}{\partial \dot{\phi}}} \text{ gives} \\ &\hspace{.5cm} {\color{green}\pi} \dot{\phi} - \mathcal{L} \\ &\hspace{.5cm} \text{is a \href{https://en.wikipedia.org/wiki/Legendre_transformation\#Analytical_mechanics}{Legendre transformation} for Hamiltonian formulation.}\\ &= \mathcal{H}. \end{align*}

The conserved charge associated with time translation (i.e. x0x0a0x^{0} \to x^{0} - a^{0}) is the Hamiltonian (i.e. total energy of the system): H=H d3xT00 d3x.(2.18)H = \int \mathcal{H} ~d^{3}x \equiv \int T^{00} ~d^{3}x. \quad (2.18)

Similarly,

T0i=giν(L(0ϕ)νϕLδ0i)Note that ν(0,1,2,3) but, i(1,2,3).=For ν=i    gii=1, but iν    giν=0. So,gii(Lϕ˙iϕLδ0i)=Since, δ0i=0. So,πiϕ \begin{align*} T^{0i} &= g^{i\nu} \left( \frac{\partial\mathcal{L}}{\partial(\partial_{0}\phi)} \partial_{\nu}\phi - \mathcal{L} \delta^{0}{}_{i} \right) \\ &\hspace{.5cm} \text{Note that } \nu \in (0, 1, 2, 3) \text{ but, } i \in (1, 2, 3).\\ &= \text{For } \nu = i \implies g^{ii} = -1, \text{ but } i \neq \nu \implies g^{i\nu} = 0. \text{ So,}\\ &\hspace{.5cm} g^{ii}\left( {\color{green}\frac{\partial\mathcal{L}}{\partial \dot{\phi}}} \partial_{i}\phi - \mathcal{L} {\color{red}\delta^{0}{}_{i}} \right)\\ &= \text{Since, } {\color{red}\delta^{0}{}_{i} = 0}. \text{ So,}\\ &\hspace{.5cm} - {\color{green}\pi} \partial_{i}\phi \end{align*}

The conserved charges (phural due to 3 conserved charges) associated with spatial translations (i.e. xixiaix^{i} \to x^{i} - a^{i}) are the physical momenta (not to be confused with the canonical momentum): Pi=πiϕ d3xT0i d3x.(2.19)P^{i} = - \int \pi \partial_{i}\phi ~d^{3}x \equiv \int T^{0i} ~d^{3}x. \quad (2.19)

Permalink at https://www.rdamodar.com.np/physics-notes/qft/the-klein-gordon-field

Published on Aug 24, 2021

Last revised on Dec 18, 2023

References

Wonder what's this about? See the author's webpage!